Structures and Antifungal Activities of New Aureobasidins

NAOYUKI AWAZU, KATSUSHIGE IKAI, JUNKO YAMAMOTO, KAZUKO NISHIMURA, SHIGETOSHI MIZUTANI, KAZUTOH TAKESAKO and IKUNOSHIN KATO

> Biotechnology Research Laboratories, Takara Shuzo Co., Ltd.,3-4-1 Seta, Otsu, Shiga 520-21, Japan

(Received for publication November 4, 1994)

Aureobasidins (Ab's) are a group of antifungal antibiotics produced by a black yeast, *Aureobasidium pullulans* R106.^{1~4)} Besides its main product AbA, there are over 20 congeners of Ab's and their structures characterized as a cyclic depsipeptide consisted of eight amino acids, three or four of which are *N*-methylated, and one hydroxy acid. In the course of our search for new Ab's, we discovered six new congeners designated

as AbT_1 , AbT_2 , AbT_3 , AbT_4 , AbU_1 , and AbU_2 (Table 1). Here we report their isolation, structures and antifungal activities.

The fermentation broth (3,700 liters) prepared as described previously⁴⁾ was treated with an equal volume of 95% ethanol. After mixing and centrifugation, the supernatant obtained was applied to a HP-40 (Mitsubishi Chemical Industries Co., Ltd.) column (400 liters), and the column was washed with 50% ethanol in water (1,000 liters) and eluted with ethanol (2,900 liters). Fractions having antifungal activity against Candida albicans were collected and concentrated in vacuo to obtain a mixture of Ab's (2,600 g). The mixture was dissolved in chloroform, applied on a silica-gel column $(30 \times 100 \text{ cm}, 30 \sim 70 \,\mu\text{m})$, and eluted with a solvent of hexane-2-propanol-acetonitrile (85:6:9). A fraction containing mainly AbA, a hydrophobic fraction, and a fraction eluted slower than AbA, a hydrophilic fraction, were separately collected, concentrated in vacuo and dissolved in ethanol. One tenth of the respective solutions was separately applied on a ODS-silica HPLC column

Table 1. Structures and HPLC data of aureobasidins A, $T_1 \sim T_4$, U_1 and U_2 .

Position	1	2	3	4	5	6	7	8	9	
	-X1-	-X2-	-Phe-	—X3—	-Pro-	-X4-	-X5-	-Leu-	-X6-	٦

Compound	HPLC*		Position				
	α value	X1	X2	X3	X4	X5	X6
AbA	10.0	(2 <i>R</i> ,3 <i>R</i>)Hmp	MeVal	MePhe	aIle	MeVal	βHOMeVal
AbT_1	10.6	(2R, 3S)Hmp	•	•	•	•	•
AbT ₂	11.2	•	•	•	•	MeLeu	•
AbT ₃	11.8	D-Hiv	•	β HOMePhe	•	•	MeVal
AbT₄	12.3	•	•	•	•	Mealle	•
AbU	5.2		Val	•	•	•	
AbU ₂	6.5	D-Hiv	•	•	Val	•	•

* The α -value is defined as relative retention time $[(t_{R,1} - t_0)/(t_{R,2} - t_0)] \times 10$, where $t_{R,1}$ and $t_{R,2}$ mean the retention times of the new aureobasidins and AbA, respectively, and t_0 is the dead retention time.

Dots (\cdot) indicate identity with the amino acids or hydroxy acid of AbA.

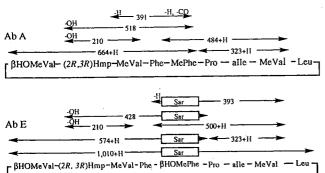
Abbreviations: Hmp, 2-hydroxy-3-methylpentanoic acid; D-Hiv, D-2-hydroxyisovaleric acid; MeVal, N-methylvaline; Val, valine; Phe, phenylalanine; MePhe, N-methylphenylalanine; β HOMeVal, β -hydroxy-N-methylvaline; Pro, proline; alle, alloisoleucine; MeaIle, N-methylalloisoleucine; MeLeu, N-methylleucine; Leu, leucine; β HOMePhe, β -hydroxy-N-methylphenylalanine.

Table 2.	Amino acid composition, HRF	AB-MS data, and molecular formulas of aureobasidins	$T_1 \sim T_4$, U_1 and U_2 .
	Amino soida	HRFAB-MS (m/z)	Molecular formula

Compound	Amino acids	HRFAB-MS (m/z) found, calcd for M+H	Molecular formula
AbT ₁	β HOMeVal 0.3, MeVal 2, Pro 1, alle 1, MePhe 1, Leu 1, Phe 1, methylamine 0.4	1,101.697, 1,101.696	$C_{60}H_{92}N_8O_{11}$
AbT ₂	β HOMeVal 0.5, MeVal 1, Pro 1, MeLeu 1, alle 1, MePhe 1, Leu 1, Phe 1, methylamine 0.4	1,115.717, 1,115.712	$C_{61}H_{94}N_8O_{11}$
AbT ₃	MeVal 3, Pro 1, alle 1, Leu 1, Phe 1, methylamine 0.6	1,087.683, 1,087.681	$C_{59}H_{90}H_8O_{11}$
AbT ₄	βHOMeVal 0.4, MeVal 1, Pro 1, MeaIle 1, alle 1, MePhe 1, Leu 1, Phe 1, methylamine 0.3	1,115.717, 1,115.712	$C_{61}H_{94}N_8O_{11}$
AbU ₁	β HOMeVal 0.6, MeVal 1, Pro 1, Val 1, alle 1, MePhe 1, Leu 1, Phe 1, methylamine 0.2	1,087,674, 1,087.681	$C_{59}H_{90}N_8O_{11}$
AbU ₂	βHOMeVal 0.6, MeVal 2, Pro 1, Val 1, MePhe 1, Leu 1, Phe 1, methylamine 0.2	1,073.667, 1,073.665	$C_{58}H_{88}N_8O_{11}$

JUNE 1995

 $(10 \times 50 \text{ cm}, 15 \sim 30 \,\mu\text{m})$ with 70% acetonitrile in water. Ab's T₁ ~ T₄ were isolated from the hydrophobic fraction by the repetitive HPLC procedures, yielding pure AbT₁ (30 mg), AbT₂ (10 mg), AbT₃ (76 mg), and AbT₄ (15 mg). Ab's U₁ and U₂ were isolated from the hydrophilic fraction by the HPLC procedures, yielding pure AbU₁ (15 mg) and AbU₂ (24 mg).


Amino acid analyses of the amino acids and Nmethylated amino acids of the six new Ab's were carried out as described previously²⁾ and molecular formulas of them were determined by HRFAB-MS with Jeol-JMS DX-302 (Table 2).

AbT₁ had the same amino acid composition and molecular formula (Table 2) as AbA, and further showed the same fragment ions in its FAB-MS (Table 3) as AbA, suggesting a difference in the stereochemistry of the constituent amino acids or hydroxy acid. The stereochemistry of each amino acid residue was found to be L-form, the same as that of AbA, by HPLC with the

Table 3.	FAB-MS	data	of	aureobasidins	Α,	E,	$\mathbf{T_1}\!\sim\!\mathbf{T_4},$
U_1 and	U ₂ .						

Compound	$(M + H)^{+}$	Fragment ion peaks m/z
AbAª	1,101	210, 324, 391, 485, 518, 665
AbE ^b	1,117	210, 324, 393, 428, 501, 575, 1,011
AbT ₁	1,101	210, 324, 391, 485, 518, 665
AbT ₂	1,115	210, 338, 391, 499, 518, 665
AbT ₃	1,087	196, 324, 393, 414, 501, 545, 981
AbT₄	1,115	210, 338, 391, 499, 518, 665
AbU	1,087	324, 485, 504, 651
AbU ₂	1,073	196, 310, 391, 471, 504, 651

chiral column.²⁾ To determine the absolute configuration of the hydroxy acid residue, Hmp of AbT₁ was purified from its hydrolysate by Dowex 50W and analyzed by ODS-silica column (Capcell Pak, 4.6×250 mm; 4% acetonitrile in 0.05% trifluoroacetic acid; UV detection at 210 nm) and Chiralpak WH column.²⁾ The retention time in ODS-silica HPLC of the Hmp from AbT₁ was 27.8 minutes, whereas those of synthesized (2*R*,3*R*)- or (2*S*,3*S*)-Hmp and (2*R*,3*S*)- or (2*S*,3*R*)-Hmp were 27.0 and 28.0 minutes, respectively,²⁾ indicating the Hmp of AbT₁ to be (2*R*,3*S*) or (2*S*,3*R*). The analysis with Chiralpak showed the configuration of 2-position of Hmp to be *R*, resulting that AbT₁ had (2*R*,3*S*)-Hmp, differing from (2*R*,3*R*)-Hmp of AbA. The structure of AbT₁ was determined as [(2*R*,3*S*)-Hmp¹]-AbA.

The molecular formula of AbT_2 and its fragment ions (m/z 338, 499) in the FAB-MS were larger than those of AbA by 14 daltons, a methylene unit. Further, the amino acid analysis indicated presence of MeLeu instead of MeVal of AbA (Table 2). These results revealed the structure of AbT_2 as [MeLeu⁷]-AbA. AbT_4 had the same molecular formula and FAB-MS fragment ions with AbT_2 . The amino acid analysis indicated presence of Mealle instead of MeVal of AbA, indicating the structure of AbT_4 as [Mealle⁷]-AbA.

The pattern of FAB-MS fragment ions of AbT₃ was similar to that of AbE, [β HOMePhe⁴]-AbA. The amino acid analysis of AbT₃ indicated absence of β HOMeVal and MePhe, and presence of 3 moles of MeVal. These results suggested substitutions of β HOMeVal with MeVal and MePhe with β HOMePhe. The hydroxy acid purified from its acid hydrolysate by Dowex 50W was identified as D-Hiv by Chiralpak WH column.²⁾ Thus, the structure of AbT₃ was identified as [D-Hiv¹, β HOMePhe⁴, MeVal⁹]-AbA.

AbU₁ was a methylene smaller than AbA, coincidently with the amino acid analysis indicating substitution of 1 mole MeVal with Val. The fragment ions at m/z 210 and 391 derived from the fragments containing MeVal² in AbA were little observed, showing presence of Val instead of MeVal². These results indicated the structure of AbU₁ as [Val²]-AbA.

The molecular formula of AbU_2 was smaller than AbA by two methylene units, which was also indicated

Table 4. Antifungal activity of aureobasidins A, $T_1 \sim T_4$, U_1 and U_2 .

		MIC (µg/ml)							
Organism* —	AbA	AbT ₁	AbT ₂	AbT ₃	AbT ₄	AbU ₁	AbU ₂		
C.a. 0136	0.05	0.0125	0.10	0.39	0.10	0.78	0.025		
C.a. 0171	0.05	0.0125	0.20	0.39	0.20	0.78	0.05		
C.k. 0301	0.78	0.39	0.78	6.25	1.56	0.39	0.39		
C.g. 1062	0.20	0.20	0.78	12.5	0.78	>25	0.78		
Cr.n. 0354	0.78	1.56	1.56	>25	1.56	>25	6.25		
S.c. 9763	0.39	0.39	0.78	25	0.39	>25	0.78		

* C.a. 0136: Candida albicans TIMM 0136; C.a. 0171: Candida albicans TIMM 0171; C.k. 0301: Candida kefyr TIMM 0301;
C.g. 1062: Candida glabrata TIMM 1062; Cr.n. 0354: Cryptococcus neoformans TIMM 0354; S.c. 9763: Saccharomyces cerevisiae
ATCC 9763. MIC's were determined by the serial two-fold dilution method on Sabouraud-dextrose agar medium.⁴⁾

by the amino acid analysis showing presence of Val instead of alle, and by the hydroxy acid analysis with the chiral column indicating presence of D-Hiv instead of Hmp. Thus, the structure of AbU_2 was identified as [D-Hiv¹, Val⁶]-AbA.

The antifungal activities of the new Ab's are shown in Table 4. AbT₁, [(2*R*,3*S*)-Hmp¹]-AbA showed a little higher activity against *C. albicans* than AbA. AbU₁, [Val²]-AbA, showed lowest activity among the Ab's having β HOMeVal at position 9 and was active as much as AbF, [Val⁷]-AbA, indicating importance of the *N*methyl groups of the amino acids at positions 2 and 7 to the high activity of Ab's. The activity of AbT₃ was highest among the Ab's having no β HOMeVal at position 9, which may suggest contribution of β HOMePhe in place of β HOMeVal but contradict the activity of AbR, [β HOMePhe⁴, MeVal⁹]-AbA showing little antifungal activity.¹)

References

- TAKESAKO, K.; K. IKAI, F. HARUNA, M. ENDO, K. SHIMANAKA, E. SONO, T. NAKAMURA, I. KATO & H. YAMAGUCHI: Aureobasidins, new antifungal antibiotics: Taxonomy, fermentation, isolation and properties. J. Antibiotics 44: 919~924, 1991
- IKAI, K.; K. TAKESAKO, M. MORIGUCHI, Y. UMEDA, J. YAMAMOTO, I. KATO & H. NAGANAWA: Structure of aureobasidin A. J. Antibiotics 44: 925~933, 1991
- 3) IKAI, K.; K. SHIOMI, K. TAKESAKO, S. MIZUTANI, J. YAMAMOTO, Y. OGAWA, M. UENO & I. KATO: Structure of aureobasidins B to R. J. Antibiotics 44: 1187~1198, 1991
- YOSHIKAWA, Y.; K. IKAI, K. TAKESAKO, A. OGAWA & I. KATO: Isolation, structures and antifungal activities of new aureobasidins. J. Antibiotics 46: 1347~1354, 1993